

Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

P	A	R	T	_	A
	7 7				4

- Let U be the set of real numbers, $A = \{x/x \text{ is a solution of } x^2 4 = 0\}$ and $B = \{-1,4\}$ then compute
 - (iv) $A \cap B$ (08 Marks) (ii) B (iii) AUB A (i)
 - Among 100 students in a class 32 study Maths, 20 study Physics, 45 study Biology, 7 study Maths and Physics, 10 study physics and Biology, 15 Study Maths and Biology, 30 do not study any one of. Then find
 - The number of students studying all subjects. 2(i)
 - The number of students studying exactly one subject. (ii)

A fair coin is tossed 5 times. What is the probability that the number of heads always (O) (O) (Marks) exceeds the number of tails as each outcome is observed.

- There are two restaurants next to each other. One has the sign that says Good food is not 2 cheap" and the other has a sign that says "cheap food is not good" Are the signs says same (06 Marks) thing? If yes verify the answer. (02 Marks)
 - What is the difference between Tautology and Contingency?
 - $r \times s \wedge (p \vee r) \mid : \neg q \to s$. Verify the following without using truth table: $[(p \rightarrow q) \land (p \rightarrow$ (04 Marks)
 - Write the negation of the following statements:
 - If Rajiv is not sick, then if he goes to the picnic, then he will have a good time. (i)
 - Ajay will not win the game or he will not enter the contest. (ii)
- Let n be an integer. Prove that n is odd trand only if 7n+8 is odd. (08 Marks)
 - Prove that for all real numbers x and y, if $x + y \ge 100$, then $x \ge 50$ or $y \ge 50$. (08 Marks)
 - For all positive real numbers x and y if the product xy exceeds 25, then x > 5 or y > 5. (04 Marks)
- Prove that for any positive integer n,

$$\sum_{i=1}^{n} \frac{F_{i-1}}{2^{i}} = 1 - \frac{F_{n+2}}{2^{n}}$$

By mathematical induction, where Fn denote nth Fibonacci number.

b. Consider an 8 & Chessboard. I contains 64 1×1 squares and one 8×8 square. How many 2×2 square does it contains? How many 3×3 squares? How many squares in total? (12 Marks)

(08 Marks)

10CS34

PART - B

- 5 a. For each of the following functions, determine whether it is one-to-one and also determine its range,
 - (i) $f: z \rightarrow z$, $f(x) = x^3 x$
 - (ii) $f: R \to R$, $f(x) = e^x$
 - (iii) $f:[0,\pi] \rightarrow R$, $f(x) = \sin x$

(06 Marks)

b. Prove that $\sum_{K=0}^{n} (-1)^{K} \binom{n}{n-K} (n-K)^{m} = 0$ for n = 5 and m = 2, 3, 4 (06 Marks)

c. Let f, g, h: $z \to z$ be defined by f(x) = x - 1, g(x) = 3x, $h(x) = \begin{cases} 0, & x \text{ Even} \\ 1, & x \text{ Odd} \end{cases}$ then determine

- (i) (fog)oh (ii)
- (iii) f
- (iv) h^{500}

(08 Marks)

- a. Determine the number of relations on A = {a, b, c, d, e} that are
 - (i) Antisymmetric
- (ii) Irreflexive

(iii) Reflexive

- (iv) Mether reflexive nor irreflexive.
- b. Draw the Hasse diagram for all the positive integer division of 72.
 - May many of the equivalence relations on $A = \{a, b, c, d, e, f\}$ have
 - (i) One equivalence class of size 4.
 - (ii) At least one equivalence class with three or more elements?

(06 Marks)

(08 Marks)

(06 Marks)

a. State and prove Lagranges theorem for finite group G.

(96 Marks)

- b. Let G be a group with subgroups H and K. If |G| = 660, |K| = 66 and |K|
- c. Define a cyclic group? Verify that $(Z_5^*,*)$ is cyclic. Find a generator of this group.

(08 Marks)

- 8 a. Define addition and multiplication, denoted by \oplus and respectively, on the set Q as follows. For a, b \in Q, a \oplus b = a + b + 7, a \odot b = a + b + (ab/7) then prove that (Q, \oplus , \odot) is a ring. (08 Marks)
 - b. Prove that, a finite integral domain (D, +, *) is a fild.

(06 Marks)

c. If 3 distinct integers are randomly selected from the set {1, 2, 3, ..., , 1000}. What is the probability that their sum is divisible by 3? (06 Marks)